Limit theorems and applications (SAMSOS, 2008)
Gratis podcast

Limit theorems and applications (SAMSOS, 2008)

L'étude des processus stochastiques est un domaine mathématique qui connait un réel développement aussi bien d'un point de vue théorique que du coté des applications. Le but de cette conférence est de proposer un panorama des résultats nouveaux sur les théorèmes limites pour les processus stochastiques (dont les techniques mise en oeuvre pourront aussi bien reposer sur le calcul stochastique ou sur différentes notions de dépendance) et sur leurs applications aux statistiques. Les supports de présentation sont disponibles sur l'Espace pédagogique interactif (http://epi.univ-paris1.fr/samos-limit-theorems-application). Recommandé à : étudiant de la discipline, chercheur - Catégorie : conférences - Année de réalisation : 2008 

Denne podcast er gratis at lytte på alle podcastafspillere og Podimo-appen uden abonnement.

Alle episoder

20 episoder
episode 01 - Estimating the Degree of Activity of jumps in High Frequency Data - Jean JACOD artwork
01 - Estimating the Degree of Activity of jumps in High Frequency Data - Jean JACOD

Jean Jacod. Université Paris6. Document associé : support de présentation : http://epi.univ-paris1.fr/servlet/com.univ.collaboratif.utils.LectureFichiergw?CODE_FICHIER=1265816883468 (pdf) Ecouter l'intervention : Bande son disponible au format mp3 Durée : 51 mn

13. jan. 2008 - 50 min
episode 02 - Rates of convergence for minimal distances in the central limit theorem under projective criteria - Emmanuel RIO artwork
02 - Rates of convergence for minimal distances in the central limit theorem under projective criteria - Emmanuel RIO

In this paper, we give estimates of ideal or minimal distances between the distribution of the normalized partial sum and the limiting Gaussian distribution for stationary martingale difference sequences or stationary sequences satisfying projective criteria. Applications to functions of linear processes and to functions of expanding maps of the interval are given. This is a joint paper with J. Dedecker (Paris 6) and F. Merlevède (Paris 6). Emmanuel RIO. Université de Versailles. Ecouter l'intervention : Bande son disponible au format mp3 Durée : 44 mn

12. jan. 2008 - 43 min
episode 03 - Stein's method and weak convergence on Wiener space - Giovanni PECCATI artwork
03 - Stein's method and weak convergence on Wiener space - Giovanni PECCATI

We will show taht one can combine Malliavin calculus with Stein's method, in order to derive explicit bounds in the Gaussian and Gamma approximations of arbitrary regular functionals of a given Gaussian field (here, the notion of regularity is in the sense of Malliavin derivability). When applied to random variables belonging to a fixed Wiener chaos, our approach generalizes, refines proved (in several papers, from 2005 to 2007) by Nourdin, Nualart, Ortiz-Latorre, Peccati and Tudor. We shall discuss some connections with the classic method of moments and cumulants. As an application, we deduce explicit Berry-Esseen bounds in the Breuer-Major Central limit theorem for subordinated functionals of a fractional Brownian motion. This talk is based on joint works with I. Nourdin (Paris VI). Giovanni PECCATI. Université de Paris 6. Document associé : support de présentation : http://epi.univ-paris1.fr/servlet/com.univ.collaboratif.utils.LectureFichiergw?CODE_FICHIER=1207750005329 (pdf) Ecouter l'intervention : Bande son disponible au format mp3 Durée : 41 mn

11. jan. 2008 - 41 min
episode 04 - Asymptotic results for empirical measures of weighted sums of independant random variables- Bernard BERCU artwork
04 - Asymptotic results for empirical measures of weighted sums of independant random variables- Bernard BERCU

We investigate the asymptotic behavior of a particular family of weighted sums of independent standardized random variables with uniformly bounded third moments. We prove that the empirical CDF of the resulting partial sums converges almost surely to the normal CDF. It allows us to deduce the almost sure uniform convergence of empirical distribution of the empirical periodogram as well as the almost sure uniform convergence of spectral distribution of symmetric circulant random matrices. In the special case of trigonometric weights, we also establish a central limit theorem and a large deviation principle. It is a joint workwith W. Bryc. Bernard BERCU Université de Bordeaux 1 Document associé : support de présentation : http://epi.univ-paris1.fr/servlet/com.univ.collaboratif.utils.LectureFichiergw?CODE_FICHIER=1207750057287 (pdf) Ecouter l'intervention : Bande son disponible au format mp3 Durée : 35 mn

10. jan. 2008 - 35 min
episode 05 - Group Representations and High-Resolution Central Limit Theorems for Subordinated Spherical Random Fields - Domenico MARINUCCI artwork
05 - Group Representations and High-Resolution Central Limit Theorems for Subordinated Spherical Random Fields - Domenico MARINUCCI

We study the weak convergence (in the high-frequency limit) of the frequency components associated with Gaussian-subordinated, spherical and isotropic random fields. In particular, we provide conditions for asymptotic Gaussianity and we establish a new connection with random walks on the the dual of SO(3), which mirrors analogous results previously established for fields defined on Abelian groups. Our work is motivated by applications to cosmological data analysis, and specifically by the probabilistic modelling and the statistical nalysis of the Cosmic Microwave Background radiation, which is currently at the frontier of physical research. To obtain our main results, we prove several fine estimates involving convolutions of the so-called Clebsch-Gordan coefficients (which are elements of unitary matrices connecting reducible representations of SO(3)); this allows to intepret most of our asymptotic conditions in terms of coupling of angular momenta in a quantum mechanical system. Part of the proofs are based on recently established criteria for the weak convergence of multiple Wiener-Itô integrals. This is a joint paper by Domenico Marinucci (Rome "Tor Vergata") and Giovanni Peccati (Paris VI). Domenico MARINUCCI Document associé : support de présentation : http://epi.univ-paris1.fr/servlet/com.univ.collaboratif.utils.LectureFichiergw?CODE_FICHIER=1207750104939 (pdf) Ecouter l'intervention : Bande son disponible au format mp3 Durée : 57 mn

09. jan. 2008 - 56 min
En fantastisk app med et enormt stort udvalg af spændende podcasts. Podimo formår virkelig at lave godt indhold, der takler de lidt mere svære emner. At der så også er lydbøger oveni til en billig pris, gør at det er blevet min favorit app.
Rigtig god tjeneste med gode eksklusive podcasts og derudover et kæmpe udvalg af podcasts og lydbøger. Kan varmt anbefales, om ikke andet så udelukkende pga Dårligdommerne, Klovn podcast, Hakkedrengene og Han duo 😁 👍
Podimo er blevet uundværlig! Til lange bilture, hverdagen, rengøringen og i det hele taget, når man trænger til lidt adspredelse.

Tilgængelig overalt

Lyt til Podimo på din telefon, tablet, computer eller i bilen!

Et univers af underholdning på lyd

Tusindvis af lydbøger og eksklusive podcasts

Ingen reklamer

Spild ikke tiden på at lytte til reklamepauser, når du lytter til Podimos indhold.

Det får du

Ubegrænset adgang til eksklusive podcasts
Ingen reklamer
20 timers lydbøger / måned
Efter prøveperioden kun 79,00 kr. / måned. Ingen binding.

Andre eksklusive shows

Populære lydbøger