
Machine Learning Street Talk (MLST)
Podcast door Machine Learning Street Talk (MLST)
Tijdelijke aanbieding
3 maanden voor € 1,00
Daarna € 9,99 / maandElk moment opzegbaar.

Meer dan 1 miljoen luisteraars
Je zult van Podimo houden en je bent niet de enige
Rated 4.7 in the App Store
Over Machine Learning Street Talk (MLST)
Welcome! We engage in fascinating discussions with pre-eminent figures in the AI field. Our flagship show covers current affairs in AI, cognitive science, neuroscience and philosophy of mind with in-depth analysis. Our approach is unrivalled in terms of scope and rigour – we believe in intellectual diversity in AI, and we touch on all of the main ideas in the field with the hype surgically removed. MLST is run by Tim Scarfe, Ph.D (https://www.linkedin.com/in/ecsquizor/) and features regular appearances from MIT Doctor of Philosophy Keith Duggar (https://www.linkedin.com/in/dr-keith-duggar/).
Alle afleveringen
218 afleveringen
What if the most powerful technology in human history is being built by people who openly admit they don't trust each other? In this explosive 2-hour debate, three AI experts pull back the curtain on the shocking psychology driving the race to Artificial General Intelligence—and why the people building it might be the biggest threat of all. Kokotajlo predicts AGI by 2028 based on compute scaling trends. Marcus argues we haven't solved basic cognitive problems from his 2001 research. The stakes? If Kokotajlo is right and Marcus is wrong about safety progress, humanity may have already lost control. Sponsor messages: ======== Google Gemini: Google Gemini features Veo3, a state-of-the-art AI video generation model in the Gemini app. Sign up at https://gemini.google.com Tufa AI Labs are hiring for ML Engineers and a Chief Scientist in Zurich/SF. They are top of the ARCv2 leaderboard! https://tufalabs.ai/ ======== Guest Powerhouse Gary Marcus - Cognitive scientist, author of "Taming Silicon Valley," and AI's most prominent skeptic who's been warning about the same fundamental problems for 25 years (https://garymarcus.substack.com/) Daniel Kokotajlo - Former OpenAI insider turned whistleblower who reveals the disturbing rationalizations of AI lab leaders in his viral "AI 2027" scenario (https://ai-2027.com/) Dan Hendrycks - Director of the Center for AI Safety who created the benchmarks used to measure AI progress and argues we have only years, not decades, to prevent catastrophe (https://danhendrycks.com/) Transcript: http://app.rescript.info/public/share/tEcx4UkToi-2jwS1cN51CW70A4Eh6QulBRxDILoXOno TOC: Introduction: The AI Arms Race 00:00:04 - The Danger of Automated AI R&D 00:00:43 - The Rationalization: "If we don't, someone else will" 00:01:56 - Sponsor Reads (Tufa AI Labs & Google Gemini) 00:02:55 - Guest Introductions The Philosophical Stakes 00:04:13 - What is the Positive Vision for AGI? 00:07:00 - The Abundance Scenario: Superintelligent Economy 00:09:06 - Differentiating AGI and Superintelligence (ASI) 00:11:41 - Sam Altman: "A Decade in a Month" 00:14:47 - Economic Inequality & The UBI Problem Policy and Red Lines 00:17:13 - The Pause Letter: Stopping vs. Delaying AI 00:20:03 - Defining Three Concrete Red Lines for AI Development 00:25:24 - Racing Towards Red Lines & The Myth of "Durable Advantage" 00:31:15 - Transparency and Public Perception 00:35:16 - The Rationalization Cascade: Why AI Labs Race to "Win" Forecasting AGI: Timelines and Methodologies 00:42:29 - The Case for Short Timelines (Median 2028) 00:47:00 - Scaling Limits: Compute, Data, and Money 00:49:36 - Forecasting Models: Bio-Anchors and Agentic Coding 00:53:15 - The 10^45 FLOP Thought Experiment The Great Debate: Cognitive Gaps vs. Scaling 00:58:41 - Gary Marcus's Counterpoint: The Unsolved Problems of Cognition 01:00:46 - Current AI Can't Play Chess Reliably 01:08:23 - Can Tools and Neurosymbolic AI Fill the Gaps? 01:16:13 - The Multi-Dimensional Nature of Intelligence 01:24:26 - The Benchmark Debate: Data Contamination and Reliability 01:31:15 - The Superhuman Coder Milestone Debate 01:37:45 - The Driverless Car Analogy The Alignment Problem 01:39:45 - Has Any Progress Been Made on Alignment? 01:42:43 - "Fairly Reasonably Scares the Sh*t Out of Me" 01:46:30 - Distinguishing Model vs. Process Alignment Scenarios and Conclusions 01:49:26 - Gary's Alternative Scenario: The Neurosymbolic Shift 01:53:35 - Will AI Become Jeff Dean? 01:58:41 - Takeoff Speeds and Exceeding Human Intelligence 02:03:19 - Final Disagreements and Closing Remarks REFS: Gary Marcus (2001) - The Algebraic Mind https://mitpress.mit.edu/9780262632683/the-algebraic-mind/ 00:59:00 Gary Marcus & Ernest Davis (2019) - Rebooting AI https://www.penguinrandomhouse.com/books/566677/rebooting-ai-by-gary-marcus-and-ernest-davis/ 01:31:59 Gary Marcus (2024) - Taming SV https://www.hachettebookgroup.com/titles/gary-marcus/taming-silicon-valley/9781541704091/ 00:03:01

We interview Professor Christopher Summerfield from Oxford University about his new book "These Strange New Minds: How AI Learned to Talk and What It". AI learned to understand the world just by reading text - something scientists thought was impossible. You don't need to see a cat to know what one is; you can learn everything from words alone. This is "the most astonishing scientific discovery of the 21st century."People are split: some refuse to call what AI does "thinking" even when it outperforms humans, while others believe if it acts intelligent, it is intelligent. Summerfield takes the middle ground - AI does something genuinely like human reasoning, but that doesn't make it human.Sponsor messages:========Google Gemini: Google Gemini features Veo3, a state-of-the-art AI video generation model in the Gemini app. Sign up at https://gemini.google.comTufa AI Labs are hiring for ML Engineers and a Chief Scientist in Zurich/SF. They are top of the ARCv2 leaderboard! https://tufalabs.ai/========Prof. Christopher Summerfieldhttps://www.psy.ox.ac.uk/people/christopher-summerfieldThese Strange New Minds: How AI Learned to Talk and What It Meanshttps://amzn.to/4e26BVaTable of Contents:Introduction & Setup00:00:00 Superman 3 Metaphor - Humans Absorbed by Machines00:02:01 Book Introduction & AI Debate Context00:03:45 Sponsor Segments (Google Gemini, Tufa Labs)Philosophical Foundations00:04:48 The Fractured AI Discourse00:08:21 Ancient Roots: Aristotle vs Plato (Empiricism vs Rationalism)00:10:14 Historical AI: Symbolic Logic and Its LimitsThe Language Revolution00:12:11 ChatGPT as the Rubicon Moment00:14:00 The Astonishing Discovery: Learning Reality from Words Alone00:15:47 Equivalentists vs Exceptionalists DebateCognitive Science Perspectives00:19:12 Functionalism and the Duck Test00:21:48 Brain-AI Similarities and Computational Principles00:24:53 Reconciling Chomsky: Evolution vs Learning00:28:15 Lamarckian AI vs Darwinian Human LearningThe Reality of AI Capabilities00:30:29 Anthropomorphism and the Clever Hans Effect00:32:56 The Intentional Stance and Nature of Thinking00:37:56 Three Major AI Worries: Agency, Personalization, DynamicsSocietal Risks and Complex Systems00:37:56 AI Agents and Flash Crash Scenarios00:42:50 Removing Frictions: The Lawfare Example00:46:15 Gradual Disempowerment Theory00:49:18 The Faustian Pact of TechnologyHuman Agency and Control00:51:18 The Crisis of Authenticity00:56:22 Psychology of Control vs Reward01:00:21 Dopamine Hacking and Variable ReinforcementFuture Directions01:02:27 Evolution as Goal-less Optimization01:03:31 Open-Endedness and Creative Evolution01:06:46 Writing, Creativity, and AI-Generated Content01:08:18 Closing RemarksREFS:Academic References (Abbreviated)Essential Books"These Strange New Minds" - C. Summerfield [00:02:01] - Main discussion topic"The Mind is Flat" - N. Chater [00:33:45] - Summerfield's favorite on cognitive illusions"AI: A Guide for Thinking Humans" - M. Mitchell [00:04:58] - Host's previous favorite"Principia Mathematica" - Russell & Whitehead [00:11:00] - Logic Theorist reference"Syntactic Structures" - N. Chomsky (1957) [00:13:30] - Generative grammar foundation"Why Greatness Cannot Be Planned" - Stanley & Lehman [01:04:00] - Open-ended evolutionKey Papers & Studies"Gradual Disempowerment" - D. Duvenaud [00:46:45] - AI threat model"Counterfeit People" - D. Dennett (Atlantic) [00:52:45] - AI societal risks"Open-Endedness is Essential..." - DeepMind/Rocktäschel/Hughes [01:03:42]Heider & Simmel (1944) [00:30:45] - Agency attribution to shapesWhitehall Studies - M. Marmot [00:59:32] - Control and health outcomes"Clever Hans" - O. Pfungst (1911) [00:31:47] - Animal intelligence illusionHistorical References

"Blurring Reality" - Chai's Social AI Platform - sponsored This episode of MLST explores the groundbreaking work of Chai, a social AI platform that quietly built one of the world's largest AI companion ecosystems before ChatGPT's mainstream adoption. With over 10 million active users and just 13 engineers serving 2 trillion tokens per day, Chai discovered the massive appetite for AI companionship through serendipity while searching for product-market fit. CHAI sponsored this show *because they want to hire amazing engineers* -- CAREER OPPORTUNITIES AT CHAI Chai is actively hiring in Palo Alto with competitive compensation ($300K-$800K+ equity) for roles including AI Infrastructure Engineers, Software Engineers, Applied AI Researchers, and more. Fast-track qualification available for candidates with significant product launches, open source contributions, or entrepreneurial success. https://www.chai-research.com/jobs/ The conversation with founder William Beauchamp and engineers Tom Lu and Nischay Dhankhar covers Chai's innovative technical approaches including reinforcement learning from human feedback (RLHF), model blending techniques that combine smaller models to outperform larger ones, and their unique infrastructure challenges running exaflop-class compute. SPONSOR MESSAGES: *** Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. They are hiring a Chief Engineer and ML engineers in Zurich and SF. Goto https://tufalabs.ai/ *** Key themes explored include: - The ethics of AI engagement optimization and attention hacking - Content moderation at scale with a lean engineering team - The shift from AI as utility tool to AI as social companion - How users form deep emotional bonds with artificial intelligence - The broader implications of AI becoming a social medium We also examine OpenAI's recent pivot toward companion AI with April's new GPT-4o, suggesting a fundamental shift in how we interact with artificial intelligence - from utility-focused tools to companion-like experiences that blur the lines between human and artificial intimacy. The episode also covers Chai's unconventional approach to hiring only top-tier engineers, their bootstrap funding strategy focused on user revenue over VC funding, and their rapid experimentation culture where one in five experiments succeed. TOC: 00:00:00 - Introduction: Steve Jobs' AI Vision & Chai's Scale 00:04:02 - Chapter 1: Simulators - The Birth of Social AI 00:13:34 - Chapter 2: Engineering at Chai - RLHF & Model Blending 00:21:49 - Chapter 3: Social Impact of GenAI - Ethics & Safety 00:33:55 - Chapter 4: The Lean Machine - 13 Engineers, Millions of Users 00:42:38 - Chapter 5: GPT-4o Becoming a Companion - OpenAI's Pivot 00:50:10 - Chapter 6: What Comes Next - The Future of AI Intimacy TRANSCRIPT: https://www.dropbox.com/scl/fi/yz2ewkzmwz9rbbturfbap/CHAI.pdf?rlkey=uuyk2nfhjzezucwdgntg5ubqb&dl=0

Today GoogleDeepMind released AlphaEvolve: a Gemini coding agent for algorithm discovery. It beat the famous Strassen algorithm for matrix multiplication set 56 years ago. Google has been killing it recently. We had early access to the paper and interviewed the researchers behind the work. AlphaEvolve: A Gemini-powered coding agent for designing advanced algorithms https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/ Authors: Alexander Novikov*, Ngân Vũ*, Marvin Eisenberger*, Emilien Dupont*, Po-Sen Huang*, Adam Zsolt Wagner*, Sergey Shirobokov*, Borislav Kozlovskii*, Francisco J. R. Ruiz, Abbas Mehrabian, M. Pawan Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian Nowozin, Pushmeet Kohli, Matej Balog* (* indicates equal contribution or special designation, if defined elsewhere) SPONSOR MESSAGES: *** Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. They are hiring a Chief Engineer and ML engineers. Events in Zurich. Goto https://tufalabs.ai/ *** AlphaEvolve works like a very smart, tireless programmer. It uses powerful AI language models (like Gemini) to generate ideas for computer code. Then, it uses an "evolutionary" process – like survival of the fittest for programs. It tries out many different program ideas, automatically tests how well they solve a problem, and then uses the best ones to inspire new, even better programs. Beyond this mathematical breakthrough, AlphaEvolve has already been used to improve real-world systems at Google, such as making their massive data centers run more efficiently and even speeding up the training of the AI models that power AlphaEvolve itself. The discussion also covers how humans work with AlphaEvolve, the challenges of making AI discover things, and the exciting future of AI helping scientists make new discoveries. In short, AlphaEvolve is a powerful new AI tool that can invent new algorithms and solve complex problems, showing how AI can be a creative partner in science and engineering. Guests: Matej Balog: https://x.com/matejbalog Alexander Novikov: https://x.com/SashaVNovikov REFS: MAP Elites [Jean-Baptiste Mouret, Jeff Clune] https://arxiv.org/abs/1504.04909 FunSearch [Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog, M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang, Omar Fawzi, Pushmeet Kohli & Alhussein Fawzi] https://www.nature.com/articles/s41586-023-06924-6 TOC: [00:00:00] Introduction: Alpha Evolve's Breakthroughs, DeepMind's Lineage, and Real-World Impact [00:12:06] Introducing AlphaEvolve: Concept, Evolutionary Algorithms, and Architecture [00:16:56] Search Challenges: The Halting Problem and Enabling Creative Leaps [00:23:20] Knowledge Augmentation: Self-Generated Data, Meta-Prompting, and Library Learning [00:29:08] Matrix Multiplication Breakthrough: From Strassen to AlphaEvolve's 48 Multiplications [00:39:11] Problem Representation: Direct Solutions, Constructors, and Search Algorithms [00:46:06] Developer Reflections: Surprising Outcomes and Superiority over Simple LLM Sampling [00:51:42] Algorithmic Improvement: Hill Climbing, Program Synthesis, and Intelligibility [01:00:24] Real-World Application: Complex Evaluations and Robotics [01:05:39] Role of LLMs & Future: Advanced Models, Recursive Self-Improvement, and Human-AI Collaboration [01:11:22] Resource Considerations: Compute Costs of AlphaEvolve This is a trial of posting videos on Spotify, thoughts? Email me or chat in our Discord

Randall Balestriero joins the show to discuss some counterintuitive findings in AI. He shares research showing that huge language models, even when started from scratch (randomly initialized) without massive pre-training, can learn specific tasks like sentiment analysis surprisingly well, train stably, and avoid severe overfitting, sometimes matching the performance of costly pre-trained models. This raises questions about when giant pre-training efforts are truly worth it. He also talks about how self-supervised learning (where models learn from data structure itself) and traditional supervised learning (using labeled data) are fundamentally similar, allowing researchers to apply decades of supervised learning theory to improve newer self-supervised methods. Finally, Randall touches on fairness in AI models used for Earth data (like climate prediction), revealing that these models can be biased, performing poorly in specific locations like islands or coastlines even if they seem accurate overall, which has important implications for policy decisions based on this data. SPONSOR MESSAGES: *** Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. They are hiring a Chief Engineer and ML engineers. Events in Zurich. Goto https://tufalabs.ai/ *** TRANSCRIPT + SHOWNOTES: https://www.dropbox.com/scl/fi/n7yev71nsjso71jyjz1fy/RANDALLNEURIPS.pdf?rlkey=0dn4injp1sc4ts8njwf3wfmxv&dl=0 TOC: 1. Model Training Efficiency and Scale [00:00:00] 1.1 Training Stability of Large Models on Small Datasets [00:04:09] 1.2 Pre-training vs Random Initialization Performance Comparison [00:07:58] 1.3 Task-Specific Models vs General LLMs Efficiency 2. Learning Paradigms and Data Distribution [00:10:35] 2.1 Fair Language Model Paradox and Token Frequency Issues [00:12:02] 2.2 Pre-training vs Single-task Learning Spectrum [00:16:04] 2.3 Theoretical Equivalence of Supervised and Self-supervised Learning [00:19:40] 2.4 Self-Supervised Learning and Supervised Learning Relationships [00:21:25] 2.5 SSL Objectives and Heavy-tailed Data Distribution Challenges 3. Geographic Representation in ML Systems [00:25:20] 3.1 Geographic Bias in Earth Data Models and Neural Representations [00:28:10] 3.2 Mathematical Limitations and Model Improvements [00:30:24] 3.3 Data Quality and Geographic Bias in ML Datasets REFS: [00:01:40] Research on training large language models from scratch on small datasets, Randall Balestriero et al. https://openreview.net/forum?id=wYGBWOjq1Q [00:10:35] The Fair Language Model Paradox (2024), Andrea Pinto, Tomer Galanti, Randall Balestriero https://arxiv.org/abs/2410.11985 [00:12:20] Muppet: Massive Multi-task Representations with Pre-Finetuning (2021), Armen Aghajanyan et al. https://arxiv.org/abs/2101.11038 [00:14:30] Dissociating language and thought in large language models (2023), Kyle Mahowald et al. https://arxiv.org/abs/2301.06627 [00:16:05] The Birth of Self-Supervised Learning: A Supervised Theory, Randall Balestriero et al. https://openreview.net/forum?id=NhYAjAAdQT [00:21:25] VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Adrien Bardes, Jean Ponce, Yann LeCun https://arxiv.org/abs/2105.04906 [00:25:20] No Location Left Behind: Measuring and Improving the Fairness of Implicit Representations for Earth Data (2025), Daniel Cai, Randall Balestriero, et al. https://arxiv.org/abs/2502.06831 [00:33:45] Mark Ibrahim et al.'s work on geographic bias in computer vision datasets, Mark Ibrahim https://arxiv.org/pdf/2304.12210

Rated 4.7 in the App Store
Tijdelijke aanbieding
3 maanden voor € 1,00
Daarna € 9,99 / maandElk moment opzegbaar.
Exclusieve podcasts
Advertentievrij
Gratis podcasts
Luisterboeken
20 uur / maand