
engelsk
Uddannelse
Begrænset tilbud
Derefter 99 kr. / månedOpsig når som helst.
Læs mere Deep Learning 2019 (QHD 1920 - Video & Folien)
Deep Learning (DL) has attracted much interest in a wide range of applications such as image recognition, speech recognition and artificial intelligence, both from academia and industry. This lecture introduces the core elements of neural networks and deep learning, it comprises: (multilayer) perceptron, backpropagation, fully connected neural networks loss functions and optimization strategies convolutional neural networks (CNNs) activation functions regularization strategies common practices for training and evaluating neural networks visualization of networks and results common architectures, such as LeNet, Alexnet, VGG, GoogleNet recurrent neural networks (RNN, TBPTT, LSTM, GRU) deep reinforcement learning unsupervised learning (autoencoder, RBM, DBM, VAE) generative adversarial networks (GANs) weakly supervised learning applications of deep learning (segmentation, object detection, speech recognition, ...)
12 - Deep Learning 2019
11 - Deep Learning 2019
The slides of the first six minutes unfortunately could not be recorded. Die Folien der ersten sechs Minuten konnten leider nicht aufgezeichnet werden.
10 - Deep Learning 2019
9 - Deep Learning 2019
8 - Deep Learning 2019
Deep Learning (DL) has attracted much interest in a wide range of applications such as image recognition, speech recognition and artificial intelligence, both from academia and industry. This lecture introduces the core elements of neural networks and deep learning, it comprises: (multilayer) perceptron, backpropagation, fully connected neural networks loss functions and optimization strategies convolutional neural networks (CNNs) activation functions regularization strategies common practices for training and evaluating neural networks visualization of networks and results common architectures, such as LeNet, Alexnet, VGG, GoogleNet recurrent neural networks (RNN, TBPTT, LSTM, GRU) deep reinforcement learning unsupervised learning (autoencoder, RBM, DBM, VAE) generative adversarial networks (GANs) weakly supervised learning applications of deep learning (segmentation, object detection, speech recognition, ...) durch technische Probleme fehlen die ersten Minuten der Vorlesung. Wir bitten das zu entschuldigen.
Vælg dit abonnement
Begrænset tilbud
Premium
20 timers lydbøger
Podcasts kun på Podimo
Gratis podcasts
Opsig når som helst
2 måneder kun 19 kr.
Derefter 99 kr. / måned
Premium Plus
100 timers lydbøger
Podcasts kun på Podimo
Gratis podcasts
Opsig når som helst
Prøv gratis i 7 dage
Derefter 129 kr. / måned
2 måneder kun 19 kr. Derefter 99 kr. / måned. Opsig når som helst.