Imagen de portada del espectáculo Heights and Distances ( Part 5) Some Applications of Trigonometry | CBSE | Class 10 | Math

Heights and Distances ( Part 5) Some Applications of Trigonometry | CBSE | Class 10 | Math

Podcast de

hindi

Tecnología y ciencia

Oferta limitada

2 meses por 1 €

Después 4,99 € / mesCancela cuando quieras.

  • 20 horas de audiolibros / mes
  • Podcasts solo en Podimo
  • Podcast gratuitos
Empezar

Acerca de Heights and Distances ( Part 5) Some Applications of Trigonometry | CBSE | Class 10 | Math

This podcast is a part of a series for, CBSE Class 10 Maths. We recommend that you take a look at our YouTube channel, to enter this new world of virtual learning at its best. || Youtube: Shiksha Abhiyan || t.ly/dN9j8 ||

Todos los episodios

5 episodios
episode Q5. A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After some time, the angle of elevation reduces to 30°. Find the distance travelled by the balloon during the interval. artwork

Q5. A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After some time, the angle of elevation reduces to 30°. Find the distance travelled by the balloon during the interval.

This podcast is a part of a series for, CBSE Class 10 Maths. We recommend that you take a look at our YouTube channel, to enter this new world of virtual learning at its best. || Youtube: Shiksha Abhiyan || t.ly/dN9j8 ||

22 de oct de 2020 - 4 min
episode Q4. The angle of elevation of a jet fighter from a point A on the ground is 60°. After a flight of 15 seconds , the angle of elevation changes to 30°. If the jet is flying at a speed of 720 km/hr, find the constant height at which the jet is flying. artwork

Q4. The angle of elevation of a jet fighter from a point A on the ground is 60°. After a flight of 15 seconds , the angle of elevation changes to 30°. If the jet is flying at a speed of 720 km/hr, find the constant height at which the jet is flying.

This podcast is a part of a series for, CBSE Class 10 Maths. We recommend that you take a look at our YouTube channel, to enter this new world of virtual learning at its best. || Youtube: Shiksha Abhiyan || t.ly/dN9j8 ||

22 de oct de 2020 - 4 min
episode Q3. The angle of elevation of a jet plane from a point A on the ground is 60°. After a flight of 30 seconds, the angle of elevation changes to 30°. If the jet plane is flying at a constant height of 3600V3rn, Find the speed of the jet plane. artwork

Q3. The angle of elevation of a jet plane from a point A on the ground is 60°. After a flight of 30 seconds, the angle of elevation changes to 30°. If the jet plane is flying at a constant height of 3600V3rn, Find the speed of the jet plane.

This podcast is a part of a series for, CBSE Class 10 Maths. We recommend that you take a look at our YouTube channel, to enter this new world of virtual learning at its best. || Youtube: Shiksha Abhiyan || t.ly/dN9j8 ||

22 de oct de 2020 - 4 min
episode Q2. From the top of a building 60 m high , the angles of depression of the top and bottom of a tower are observed to be 30° and 60°. Find the height of the tower. artwork

Q2. From the top of a building 60 m high , the angles of depression of the top and bottom of a tower are observed to be 30° and 60°. Find the height of the tower.

This podcast is a part of a series for, CBSE Class 10 Maths. We recommend that you take a look at our YouTube channel, to enter this new world of virtual learning at its best. || Youtube: Shiksha Abhiyan || t.ly/dN9j8 ||

22 de oct de 2020 - 3 min
episode Q1. From a window( h metres high above the ground) of a house in a street, the angle of elevation and depression of the top and the foot of another house on the opposite side of the street are θ and (/) respectively. Show that the height of the opposite house is h(1+ tan θ cot 0) m artwork

Q1. From a window( h metres high above the ground) of a house in a street, the angle of elevation and depression of the top and the foot of another house on the opposite side of the street are θ and (/) respectively. Show that the height of the opposite house is h(1+ tan θ cot 0) m

This podcast is a part of a series for, CBSE Class 10 Maths. We recommend that you take a look at our YouTube channel, to enter this new world of virtual learning at its best. || Youtube: Shiksha Abhiyan || t.ly/dN9j8 ||

22 de oct de 2020 - 3 min
Regístrate para escuchar
Soy muy de podcasts. Mientras hago la cama, mientras recojo la casa, mientras trabajo… Y en Podimo encuentro podcast que me encantan. De emprendimiento, de salid, de humor… De lo que quiera! Estoy encantada 👍
Soy muy de podcasts. Mientras hago la cama, mientras recojo la casa, mientras trabajo… Y en Podimo encuentro podcast que me encantan. De emprendimiento, de salid, de humor… De lo que quiera! Estoy encantada 👍
MI TOC es feliz, que maravilla. Ordenador, limpio, sugerencias de categorías nuevas a explorar!!!
Me suscribi con los 14 días de prueba para escuchar el Podcast de Misterios Cotidianos, pero al final me quedo mas tiempo porque hacia tiempo que no me reía tanto. Tiene Podcast muy buenos y la aplicación funciona bien.
App ligera, eficiente, encuentras rápido tus podcast favoritos. Diseño sencillo y bonito. me gustó.
contenidos frescos e inteligentes
La App va francamente bien y el precio me parece muy justo para pagar a gente que nos da horas y horas de contenido. Espero poder seguir usándola asiduamente.

Elige tu suscripción

Oferta limitada

Premium

20 horas de audiolibros

  • Podcasts solo en Podimo

  • Podcast gratuitos

  • Cancela cuando quieras

2 meses por 1 €
Después 4,99 € / mes

Empezar

Premium Plus

100 horas de audiolibros

  • Podcasts solo en Podimo

  • Podcast gratuitos

  • Cancela cuando quieras

Disfruta 30 días gratis
Después 9,99 € / mes

Prueba gratis

Sólo en Podimo

Audiolibros populares

Empezar

2 meses por 1 €. Después 4,99 € / mes. Cancela cuando quieras.