Deep Learning 2019 (QHD 1920 - Video & Folien)

Deep Learning 2019 (QHD 1920 - Video & Folien)

Podkast av Prof. Dr. Andreas Maier

Deep Learning (DL) has attracted much interest in a wide range of applications such as image recognition, speech recognition and artificial intelligence, both from academia and industry. This lecture introduces the core elements of neural networks and deep learning, it comprises: (multilayer) perceptron, backpropagation, fully connected neural networks loss functions and optimization strategies convolutional neural networks (CNNs) activation functions regularization strategies common practices for training and evaluating neural networks visualization of networks and results common architectures, such as LeNet, Alexnet, VGG, GoogleNet recurrent neural networks (RNN, TBPTT, LSTM, GRU) deep reinforcement learning unsupervised learning (autoencoder, RBM, DBM, VAE) generative adversarial networks (GANs) weakly supervised learning applications of deep learning (segmentation, object detection, speech recognition, ...)

Tidsbegrenset tilbud

3 Måneder for 9,00 kr

Deretter 99,00 kr / MånedAvslutt når som helst.

Kom i gang

Alle episoder

12 Episoder
episode 12 - Deep Learning 2019 artwork
12 - Deep Learning 2019

24. juli 2019 - 1 h 2 min
episode 11 - Deep Learning 2019 artwork
11 - Deep Learning 2019

The slides of the first six minutes unfortunately could not be recorded. Die Folien der ersten sechs Minuten konnten leider nicht aufgezeichnet werden.

17. juli 2019 - 1 h 26 min
episode 10 - Deep Learning 2019 artwork
10 - Deep Learning 2019

10. juli 2019 - 1 h 31 min
episode 9 - Deep Learning 2019 artwork
9 - Deep Learning 2019

03. juli 2019 - 1 h 11 min
episode 8 - Deep Learning 2019 artwork
8 - Deep Learning 2019

Deep Learning (DL) has attracted much interest in a wide range of applications such as image recognition, speech recognition and artificial intelligence, both from academia and industry. This lecture introduces the core elements of neural networks and deep learning, it comprises: (multilayer) perceptron, backpropagation, fully connected neural networks loss functions and optimization strategies convolutional neural networks (CNNs) activation functions regularization strategies common practices for training and evaluating neural networks visualization of networks and results common architectures, such as LeNet, Alexnet, VGG, GoogleNet recurrent neural networks (RNN, TBPTT, LSTM, GRU) deep reinforcement learning unsupervised learning (autoencoder, RBM, DBM, VAE) generative adversarial networks (GANs) weakly supervised learning applications of deep learning (segmentation, object detection, speech recognition, ...)   durch technische Probleme fehlen die ersten Minuten der Vorlesung. Wir bitten das zu entschuldigen.

26. juni 2019 - 1 h 24 min
Enkelt å finne frem nye favoritter og lett å navigere seg gjennom innholdet i appen
Enkelt å finne frem nye favoritter og lett å navigere seg gjennom innholdet i appen
Liker at det er både Podcaster (godt utvalg) og lydbøker i samme app, pluss at man kan holde Podcaster og lydbøker atskilt i biblioteket.
Bra app. Oversiktlig og ryddig. MYE bra innhold⭐️⭐️⭐️

Tidsbegrenset tilbud

3 Måneder for 9,00 kr

Deretter 99,00 kr / MånedAvslutt når som helst.

Eksklusive podkaster

Uten reklame

Gratis podkaster

Lydbøker

20 timer i måneden

Kom i gang

Bare på Podimo

Populære lydbøker